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Summary—The reflection coefficient r of a pyramidally tapered

rectangular waveguide is derived by assuming that the taper im-
pedance is proportional to the height and guide wavelength and in- —Wave i
versely proportional to the width of the taper cross section. It is a
shown that the loci of r, plotted in the K plane as a function of taper

length for some conventional tapers, do not pass through the center I
of the chart at multiples of a half-guide wavelength as for an expo-

{
nential line, but instead they converge almost concentrically. The

frequency characteristic of the pyramidally tapered waveguide is

compared with other types of tapers. Typical 7-kmc experimental
results for several tapers differing in length are presented.

INTRODUCTION I

I
N microwave systems, a pyramidal taper is often

b

needed to connect rectangular waveguides whose
1

ratios of width to height are equal for both the input

and output terminals. The reflection coefficients of these Fig.

tapers are smaller than that of either E- or II-plane

tapers since the rate of change of impedance is much
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I—Illustration of the cross sections and the
coordinate system in a taper.

smaller. In this paper the reflection coefficients of these

tapers are derived and general design methods are pre-

sented. Following an approximate theoretical calcula-

tion of the reflection coefficients of pyramidally tapered

waveguides, two sets of loci of )7 of conventional tapers

were plotted in the K plane to show typical perform-

ances. To confirm the formulas, a set of tapers was made

to connect WR-229 and WR-159 waveguides. The cal-

culated locus of r of these tapers agreed very well with

the measured locus at 7.05 kmc. By using these formulas,

it is fairly easy to design properly pyramidally tapered

waveguides.

20. and 26b, respectively, as shown in Fig. 1. It is as-

sumed that the electromagnetic wave propagates from

left to right, and the dielectric constant of the medium

within the waveguide is unity. The intrinsic impedance

KZ of a rectangular waveguide is expressed by the fol-

lowing:2

Kz ==
7

<1 – (xo/kc(z))’ ‘
(1)

where q is a constant, ho is the free space wavelength,

and h.(z) is the cutoff wavelength at a sectional plane

CALCULATION OF REFLECTION COEFFICIENTS
z = z. By substituting the following relations

OF PYRAMIDALLY TAPERED WAV~GUIDE xc(z) Zo—z

()

Zoxil 2
——= —, and P= ——— (2)

As stated in Schelkunoff’s text, the reflection coeffi- 2a 20 2a

cient of pyramidally tapered rectangular waveguide for

the dominant mode is quite small compared to those of
in (1), Kz can be expressed as a function of z:

E- or H-plane tapers .1 First, the formula of reflection v

coefficient of these tapered waveguides will be derived.
K. =

<1 – P/(z, – z)’ “
(3)

In Fig. 1 are shown the cross sections of a tapered

waveguide and the coordinate system. The width and Following Schelkunoff’s definition, the integrated im-

the height of the large waveguide are a and b, respec- pedance Ku, of a rectangular waveguide is assumed to

tively, and the length of the taper is h. The longitudinal be proportional to its height and inversely proportional

length of the taper to the projected vertex is z,. The to its width.3 By using (3), KUO can be expressed as a

acute angles at the vertex in the xz and yz planes are function of z as follows:

27 b – 22 tan%b
* Manuscript received by the PGMTT, March 18, 1958; revised Kmv = (4)

manuscript received,. December 23, 1958. v’1 – $’/(20 – z)’”a – 2ztan8. -
~ Elec. Commumcation Lab., Nippon Telegraph and Telephone

Public Corp., Tokyo, Japan.
1 S. A. Schelkunoff, “Electromagnetic Waves, ” D, Van Nostrand 2 l&&, p. 317. See (21)-(11).

Co. Inc., New York, N. Y., pp. 316-320; 194.3. 8 Ibid., p. 319. See (21)-(21).
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If the rate of change of Kw, in the longitudinal direction

is small, the reflection coefficient ~ of the taper-, shown

in Fig. 1, is obtained by the following integration:

The phase constant ~(z) is a function of z and is given

by

27r 27r _
/’3(z) = — = ~ dl – P/(zll – z)’

h,(z)

27r

(
—1–~

1~

7 Ao )2 (20 – Z)2 “

By using this approximation, the exponent in (5) is

given by

sz— { 2(++)} “)2jp(z)dz + –j4: z – :
0

From (4), dKVU/KWV can be obtained as follows:

dKw

{

2(–a tan f?~ + b tan 8.)
— .—

Kwv (a – 2Z tan 0.) (b -- 2z tan d,)

P
–i dz. (7)

+ (al – z)’ – P(2O – Z)J

Since the ratios a/b are equal for both the input and

output terminal waveguides,

—atan6b +btantia =(). (8)

Finally, by using relations (7) and (8), the formula of

I’ is

dz
x

(20 – z)’ – P(2, – z)
. (9)

Eq. (9) is the general formula for the reflection coeffi-

cient of a pyramidally tapered waveguide. In general,

the magnitude of I’ is proportional to P and independent

of the height of the waveguide. For specified dimensions

of the terminal waveguides, the magnitude of 17 de-

creases in an oscillatory fashion with increase in longi-

tudinal length h.

Putting

z = hlz’j Zo = X02”’, P = A02P’, 11 = L+’,

(9) can be normalized as follows:

. =~foh’exp[-j~.{z - ~(+f-+)}l
dz’

x
(20’ – z’)’ – .P’(ZO’– z’)

. (lo)

Since (10) depends ordy on k’, Zo’ and P’, calculated

curves of r of some specific examples can be used as

universal design charts if a set of tables of the variables

is associated with them.

CHARACTERISTICS OF 1? OF PYRAMIIM.LI.Y

TAPERED RECTANGULAR WAVEGUIDE

Inasmuch as tapered waveguides are used in conjunct-

ion with other components in a waveguide system, it is

necessary to know not only the magnitude but the phase

of the reflection coefficient I’. By using graphical inte-

gration, calculated values of I’ from (10) have been pub-

lished for standard rectangular waveguicies over the

frequency range of 2 kmc to 14 kmc.i

First, to illustrate the general characteristics of I’ of

these tapers, the calculated results are nnentioned of

typical tapers designed to connect WR-229 and WR-159

waveguides. With regard to frequency characteristics,

I’ is calculated for three frequencies o,f 7.05 krnc

(XO=4.25 cm), 6.0 kmc (AO=5.00 cm) and 5.5 k]mc

(Xo = 5.45 cm) and the waveguide dimensions, etc., are

compi~ed in Table 1.

The tapers differing in length with parameters h, h’,

Zo’, and (3. are tabulated in Tables II–IV for 7.05, 6.0,

and 5.5 kmc, respective y. The calculated values of I’

are plotted in Figs. 2–4 and these loci correspond to the

tapers described in Tables II, III and IV, respectively.

The reference plane of I’ is at z = O, i.e., at the terminal of

the larger waveguide. Figs. 2–4 depict the typical fre-

quency characteristic of 17 for general cases. It is to be

noted that the magnitude of F decreases with increasing

taper length and the loci do not pass through the c.en ter

of the chart. Moreover, the phase angle of I’ sweeps al-

most one revolution if the taper length changes by one-

half guide wavelength. Fig. 5 shows the VSWR’S of these

tapers as a function of frequency. It should be men-

tioned that the VSWR decreases almost linearly with

length if the taper is shorter than 2X,, but not for the

longer tapers. Considering the benefit of practical ap-

plications, the loci of I’ in Figs. 2–4 were traced as values

of the admittance, even if, following the usual fashion,

the conventional notations g – jb and g +jb were deleted

in the graphs. Therefore, in order to use them as values

of the impedance, the locations of these loci should be

rotated by 180° about the center in the charts. (As for

Figs. 2–4, the loci of r in Figs. 6–8 too, were traced as

values of the admittance. Therefore, these loci also

should be rotated by 180° about the center, in order to

use them as the impedance.

In another example, tapered waveguides,, designed to

connect WR-229 with WI?- 187 waveguicles, are dis-

cussed. Table V shows the waveguide dimensions and &

in both terminal waveguides for three clifferent fre-

quencies in the 4-kmc band. (In this example, tlhe tapers

4 K. Matsumaru, “Considerations on tapered waveguides,” Elec.
Communication Lab. Tech. J., vol. 7, pp. 52-62; May, 1958.
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TABLE I

& (cm)

Waveguide a (in) b (in) 7.05 60 5.5
kmc kmc kmc

. — — —

Input terminal WR-229 2.290 1.145 4.6 5.5 6.5

Output terminal WR-159 1.590 0.795 5.0 6.3 7.4

TABLE 11

~=7.05 KMC

h (cm) 2 3 4 5 6 7

h’ 0.47 0.70 0.94 1.18 1.41 1.64

20’ 1.51 2.26 3.01 3.77 4.52 5.27
0. 24.3° 16.8° 12.7° 10.3° 8.6° 7.4°

h (cm) 2.5

h’ 0.50
20’ 1.60
.9. 19.9”

TABLE III

f=6.O KMC
—

4 5 6 7.5

0.80 1.00 1.20 1.50
2.57 3.21 :::: f:y

12.7° 10.3°

TABLE IV

j“=5.5 KMC

9

1.80
5.75
5.7°

10

2,00
6.40
5.2°

k (cm) I 3

h’ 0.55
Zo’ 1.77
0. 16.8°

Fig. 3—The curve shows a locus of 17 of the same tapers in Fig. 2
but at a frequency of 6.0 kmc. Lengths of tapers are from 2.5 cm
to 10 cm. See Tables I and III.

4 5 6 7 8 9 10

0.73 0.92 1.10 1.28 1.47 1.65 1.83
2.36 2.95 3.54 4.12 4.71 5.31 5.89

12.7° 10.3° 8.6° 7.4° 6.5° 5.7° 5.2°

Fig. 4—The curve shows a locus of r of the same tapers in Fig. 2
but at a frequency of 5.5 kmc. Lengths of tapers are from 3 cm
to 10 cm. See Tables I and IV.

Fig. 2—The curve shows a calculated locus of r of typical tapers used
to connect W R-229 and W R- 159 waveguides. Lengths of tapers
are from 2 cm to 7 cm, and the frequency is 7.05 kmc. See Tables
I and II. In Figs. 2–4, loci were shown as the admittance even if
the conventional notations g –jb and g+jb were deleted. There-
fore, to use these loci as values of the impedance, they should be
rotated by 180° about the centers in the diagrams.

Fig. 5—The curves show the VSWR’S given in Figs. 2–4 as a function
of taper length for three different frequencies.
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TABLE V

kg (cm)

Waveguide a (in) b (in) 46 I 4.2 I 3.9
kmc kmc kmc

Input terminal WR-229 2.290 1.145 7.9 9.0 10.3
Output terminal WR-187 1.872 0.872 8.9 10.8 13.1

h (cm)

h’
.20’
ea

TABLE VI

~=4.6 KMC

7 9 11 13 15 17

1.07 1.38 1.69 1.99 2.30 2.61
5.85 7.52 9.21 10.88 12.54 14.20
4.3° 3.4° 2.8” 2.4° 2.0° 1.8°

TABLE VII

j=4.2 KMC

h (cm) 7 9 11 13 15 17

h’ 0.98 1.26 1.54 1.82 2.10 2.38

20’ 5.35 6.86 8.40 9.94 11.45
0.

12.99
4.3° 3.4” 2.8° 2.4° 2.0” 1.8°

TABLE VIII

f=3.9 KMC

h (cm) 7 9 11 13 15 17

Fig. 7—The curve shows a locus of r of the same tapers in Fig. 6 but
at a frequency of 4.2 kmc. See Tables V and VII.

h’ 0.91 1.17 1.43 1.69 ~:.:] 2.21

20’ 4.96 6.38 7.82 9.20
0.

12.01
4.3° 3.4° 2.8° 2.4° 2:0° 1.8°

Fig. 8—The curve shows a locus of 1?of the same tapers in Fig. 6 but
at a frequency of 3.9 kmc. See Tables V and VI [1.

Fig. 6—The curve shows a calculated locus of 17of typical tapers used
to connect WR-229 and WR- 187 waveguides. Lengths of tapers
are from 7 cm to 17 cm, and the frequency is 4.6 kmc. See Tables
V and VI. In Figs. 6–8, loci were shown as the admittance in the
same way as those in Figs. 2–4. Therefore, to use these loci as
values of the impedance, they also should be rotated by 180°
about the centers.

are not exactly pyramidal, i.e., al/bl # az/&.) Tables Vl–

VIII list taper parameters k, h’, ZO’, and O,, for 4.6, 4,.2,

and 3.9 kmc, respectively. Figs. 6–8 show the loci of I’

calculated by an approximate method of graphical in-

tegration for the tapers listed in Tables VI-–VII 1. By

using the loci of I’ as illustrated in the examples given

in Figs, 2–8, it is possible to design any pyramidally

tapered waveguide with considerable accuracy. If 17 is

calculated from (10) for two or three discrete taper

lengths, a spiral locus of 17 can be traced through the

two or three points as illustrated in the above examples.

Finally the behavior of reflection characteristics of

these tapers are compared with other tapers. For ex.

ponential tapers, Ragan shows a typical figure of

VSWR’S which reduces to unity at multiples of a half
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wavelength and humps regularly.5 However, as seen

from Fig. 5, the VSWR’S of these tapers do not reduce

to unity for particular taper lengths. Next the reflection

characteristics of linear tapers, discussed recently,c are

somewhat similar to those of the subject pyramidal

tapers. However, the reflection of an E-plane linear

taper is more critically dependent on waveguide dimen-

sion (height of waveguide) rather than on frequency.

For these .,E-plane linear tapers, the frequency behavior

of I’ is quite similar to that shown in Fig. .5. From

Stevenson’s theoretical calculations on electromagnetic

horns, (10) is valid for small flare angles.7 Since the flare

angles of the tapers are usually small, except for ex-

tremely short tapers, the values of J7 can be calculated

from (10) with very little error.

EXPERIMENTAL RESULTS Fig. 9—Measured results of r of pyramidally tapered waveguides.

Inasmuch as the derivation of (10) is based on a num-
The waveguides of the input and output terminals are WR-159

ber of assumptions, the calculated results should be

and WR-229. Lengths of tapers are from 3 cm to 7 cm. The solid
and dashed curves show the observed and calculated “aItIeS, ~e-

checked experimentally. Measurements were made on
spectwely. The frequency 1s 7.05 kmr.

the (WR-229/WR- 159) tapers described in Tables I and

11 at a frequency of 7.05 kmc. Since the I“s of these
petted. In the frequency range approximately covered

tapers are very small, they were measured as accurately
by Figs. 2–4, the mean error in the VSWR is less than

0.02 for VSWR smaller than 1.08. As seen from Figs.
as possible. The lengths of tapers varied from 3 cm to

7 cm in intervals of 1 cm, and the data were taken at a
2–8, the VSWR’S of these particular tapers are smaller

frequency of 7.05 kmc. The reflection coefficients 17 were
than 1.07 or 1.08, and therefore, in practice, the

VSWR’S computed from (10) or (11) should agree with
measured in the smaller W R- 159 waveguide and for this

case 17 is given by
observed values to within 0.02. For tapers whose

VSWR’S are smaller than 1.05. the mean error will be

r=$~’expi{.-~(z-+(+-zo_~+z))} “ CONCLUSION
as small as 0.01.

dz
x

(Zo–k+z)’–l’(z, -k+z)
. (11)

Measured results are shown in Fig. 9, and these agree

quite well with the data calculated from (1 1). The mean

error in VSWR was as small as 0.004. The conically

looped locus of r is quite similar to that of a linear

taper. e Of course, the calculated r shown in this graph

corresponds to Fig. 2 through a simple transformation.

Other measurements were made at frequencies lower

than 7.05 kmc, and the agreement was worse, as ex-

5 G. L. Ragan, “Microwave Transmission Circuit, ” M. I.T. Rad.
Lab. Ser., McGraw-Hill Book Co., Inc., New York, N. Y., vol. 9,
p. 307; 1948. See Fig. 6.3.

GK. Matsumaru, “Reflection coefficient of E-plane tapered wave-
guides, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-6, pp. 143–149; April, 1958.

7 A. F. Stevenson, “General theory of electromagnetic horns, ” Y.
Appl. Phys., vol. 22, pp. 1447-1460; December, 1951.

S K. Matsumaru, “Rebuttal to R. F. H. Yang’s comments, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-7, pp.
175–176; January, 1959.

The reflection coefficients of pyramidally tapered

waveguides can be calculated from (10). As seen from

the examples, the VSWR’S of typical tapers are smaller

than about 1.08, and for most cases, the calculated

VSWR’S should agree with the experimental values to

within 0.02. As shown in Figs. 2–8, I’ decreases almost

concentrically for the tapers shorter than 2&, and the

phase angle sweeps almost one cycle every half a guide

wavelength of taper length. Consequently, a spiral of

r can be traced in the K plane by calculating I’ for two

or three discrete values of taper lengths. For tapers

longer than 2A. the VSWR does not decrease signifi-

cantly with the taper length.
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