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Reflection of a Pyramidally Tapered
Rectangular Waveguide*
KATSU MATSUMARUT

Summary—The reflection coefficient I' of a pyramidally tapered
rectangular waveguide is derived by assuming that the taper im-
pedance is proportional to the height and guide wavelength and in-
versely proportional to the width of the taper cross section. It is
shown that the loci of T, plotted in the K plane as a function of taper
length for some conventional tapers, do not pass through the center
of the chart at multiples of a half-guide wavelength as for an expo-
nential line, but instead they converge almost concentrically. The
frequency characteristic of the pyramidally tapered waveguide is
compared with other types of tapers. Typical 7-kmc experimental
results for several tapers differing in length are presented.

INTRODUCTION

N microwave systems, a pyramidal taper is often

needed to connect rectangular waveguides whose

ratios of width to height are equal for both the input
and output terminals. The reflection coefficients of these
tapers are smaller than that of either E- or H-plane
tapers since the rate of change of impedance is much
smaller. In this paper the reflection coefficients of these
tapers are derived and general design methods are pre-
sented. Following an approximate theoretical calcula-
tion of the reflection coefficients of pyramidally tapered
waveguides, two sets of loci of T of conventional tapers
were plotted in the K plane to show typical perform-
ances. To confirm the formulas, a set of tapers was made
to connect WR-229 and WR-159 waveguides. The cal-
culated locus of T" of these tapers agreed very well with
the measured locus at 7.05 kmc. By using these formulas,
it is fairly easy to design properly pyramidally tapered
waveguides.

CALCULATION OF REFLECTION COEFFICIENTS
oF PYRAMIDALLY TAPERED WAVEGUIDE

As stated in Schelkunoff’s text, the reflection coeffi-
cient of pyramidally tapered rectangular waveguide for
the dominant mode is quite small compared to those of
E- or H-plane tapers.! First, the formula of reflection
coefficient of these tapered waveguides will be derived.
In Fig. 1 are shown the cross sections of a tapered
waveguide and the coordinate system. The width and
the height of the large waveguide are ¢ and b, respec-
tively, and the length of the taper is . The longitudinal
length -of the taper to the projected vertex is 2. The
acute angles at the vertex in the xz and yz planes are

* Manuscript received by the PGMTT, March 18, 1958; revised
manuscript received, December 23, 1958.
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1 S. A, Schelkunoff, “Electromagnetic Waves,” D, Van Nostrand
Co. Inc., New York, N. Y., pp. 316-320; 1943.
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Fig. 1—1Illustration of the cross sections and the
coordinate system in a taper.

20, and 20, respectively, as shown in Fig. 1. It is as-
sumed that the electromagnetic wave propagates from
left to right, and the dielectric constant of the medium
within the waveguide is unity. The intrinsic impedance
K, of a rectangular waveguide is expressed by the fol-
lowing

Kz = _2_*__ )
V1= (Ao/Ne(2))?

where 7 is a constant, Ny is the free space wavelength,
and A.(2) is the cutoff wavelength at a sectional plane
z=32. By substituting the following relations

Az %0 — 3 Zoho\ 2
@ _m=z p:(i—°> 2)
2a %o 2a

(1)

in (1), K, can be expressed as a function of z:

7

T VI= Pl 2t

Following Schelkunoff’s definition, the integrated im-
pedance K., of a rectangular waveguide is assumed to
be proportional to its height and inversely proportional
to its width.® By using (3), K., can be expressed as a
function of z as follows:

2

3)

25 b— 2ztan b,
V1 — P/(zs — %)% a — 2ztand,

K'wv = (4>

2 Ibid., p. 317. See (21)-(11).
s Ibid.. p. 319. See (21)-(21).
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If the rate of change of K,, in the longitudinal direction
is small, the reflection coefficient I' of the taper, shown
in Fig. 1, is obtained by the following integration:

r—lfm fzz' d K 5
-/ (exp— i) z)x =2

The phase constant 8(z) is a function of z and is given

by

0 = = T Pl =
B(z YRR /(20 — 7)
21r( P 1 )
=] = ],

Ao 2 (20— 2)?

By using this approximation, the exponent in (5) is
given by

- fozzjmz)dz = —j%{z - —f—(z—l_;— %)} ©

From (4), dKy»/Kus can be obtained as follows:

AR o { 2(—a tan 0, -+ b tan 6,)
Koo (a — 2z tan 6,)(b — 2z tan 8y)

+ ! Yas ()
(Zo — 2)3 — P(Zo —_ Z)j )

Since the ratios a/b are equal for both the input and
output terminal waveguides,

—a tan 6, + b tan 6, = 0, (8)

Finally, by using relations (7) and (8), the formula of
Tis

o Pf" l: _47r{ P( 1 1>}:I
2 9 P ])\0 2 20— % 20
% dz
(20 — 2)8 — P(zp — 2)

9)

Eq. (9) is the general formula for the reflection coeffi-
cient of a pyramidally tapered waveguide. In general,
the magnitude of T' is proportional to P and independent
of the height of the waveguide. For specified dimensions
of the terminal waveguides, the magnitude of T' de-
creases in an oscillatory fashion with increase in longi-
tudinal length A.
Putting

z = }\()Z,, Ly = )\02-’0,, P = )\()QP/, h = )\()IL,,

(9) can be normalized as follows:

P oW P’ 1 1
)
2 Jy P =T 2 \a’ — 35z
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Since (10) depends only on %', 2’ and P’, calculated
curves of I" of some specific examples can be used as
universal design charts if a set of tables of the variables
is associated with them.

CHARACTERISTICS OF I' OF PYRAMIDALLY
TAPERED RECTANGULAR WAVEGUIDE

Inasmuch as tapered waveguides are used in conjunc-
tion with other components in a waveguide system, it is
necessary to know not only the magnitude but the phase
of the reflection coefficient T'. By using graphical inte-
gration, calculated values of I' from (10) have been pub-
lished for standard rectangular waveguides over the
frequency range of 2 kmc to 14 kmc.4

First, to illustrate the general characteristics of T' of
these tapers, the calculated results are mentioned of
typical tapers designed to connect WR-229 and WR-159
waveguides. With regard to frequency characteristics,
I' is calculated for three frequencies of 7.05 kmc
Mo=4.25 cm), 6.0 kmc (Ay=5.00 cm) and 5.5 kmc
(Ao=15.45 cm) and the waveguide dimensions, etc., are
compiled in Table I.

The tapers differing in length with parameters %, 7/,
2o’, and 8, are tabulated in Tables II-IV for 7.05, 6.0,
and 5.5 kme, respectively. The calculated values of I’
are plotted in Figs. 2—4 and these loci correspond to the
tapers described in Tables I1, 1T and IV, respectively.
The reference plane of I'isat 2=0, i.e., at the terminal of
the larger waveguide. Figs. 2—4 depict the typical fre-
quency characteristic of I" for general cases. It is to be
noted that the magnitude of I decreases with increasing
taper length and the loci do not pass through the center
of the chart. Moreover, the phase angle of I' sweeps al-
most one revolution if the taper length changes by one-
half guide wavelength. Fig. 5 shows the VSWR’s of these
tapers as a function of frequency. It should be men-
tioned that the VSWR decreases almost linearly with
length if the taper is shorter than 2A,, but not for the
longer tapers. Considering the benefit of practical ap-
plications, the loci of I' in Figs. 2—4 were traced as values
of the admittance, even if, following the usual fashion,
the conventional notations g —jb and g-+jb were deleted
in the graphs. Therefore, in order to use them as values
of the impedance, the locations of these loci should be
rotated by 180° about the center in the charts. (As for
Figs. 2—4, the loci of T' in Figs. 6—8 too, were traced as
values of the admittance. Therefore, these loci also
should be rotated by 180° about the center, in order to
use them as the impedance.

In another example, tapered waveguides, designed to
connect WR-229 with WR-187 waveguides, are dis-
cussed. Table V shows the waveguide dimensions and A,
in both terminal waveguides for three different fre-
quencies in the 4-kmc band. (In this example, the tapers

4+ K. Matsumaru, “Considerations on tapered waveguides,” Elec,
Communication Lab. Tech. J., vol. 7, pp. 52-62; May, 1958,
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TABLE 1
Ay (cm)
Waveguide | a (in) | b (in) v05] 60 | 5.5
kmc | kmc | kmce
Input terminal | WR-229 | 2.290 | 1.145 | 4.6 | 5.5 } 6.5
Output terminal, WR-159 | 1.590 [ 0.795 | 5.0 | 6.3 | 7.4
TABLE 11
F=7.05 KMC
pem| 2 |3 I 6 7
13 0.47 0.70 0.94 1.18 1.41 1.64
2 1.51 2.26 3.01 3.77 4.52 5.27
. 24.3° 16.8° 12.7° 10.3° 8.6° 7.4°
TABLE III
f=6.0 KMC
k (cm) [ 2.5 | 4 5 [ 6 | 7.5 9 | 10
Iy 0.50 0.80 1.00}1.20 | 1.50 | 1.80 | 2.00
%0 1.60 2.57 3.2113.8514.80 | 5.75 | 6.40
0, 19.9° | 12.7° | 10.3° | 8.6° | 6.9° | 5.7° | 5.2°
TABLE 1V
f=5.5 KMC
B(em)| 3 | 4 ‘ 5 | 6 } 7| 8 [ 9 | 10
n 0.55|0.7310.92{1.10 | 1.28 | 1.47 | 1.65 | 1.83
2 1.77 12.36 {2,951 3.54 | 4.12 | 4.71 | 5.31 | 5.89
0, 16.8° [12.7° 110.3° | 8.6° | 7.4° | 6.5° | 5.7° | §.2°
FT=0 :
= ‘ r+jx
J Input| plane J
. . ~
4cm 2cm
Gc,o' |
= 6=95
0==90 - |
1102/ 103 104
7
Tcm 5cem
3cm
/T.—_oo

Fig. 2—The curve shows a calculated locus of T of typical tapers used
to connect WR-229 and WR-159 waveguides. Lengths of tapers
are from 2 cm to 7 cm, and the frequency is 7.05 kmc. See Tables
I and II. In Figs. 2-4, loci were shown as the admittance even if
the conventional notations g—jb and g-+-jb were deleted. There-
fore, to use these loci as values of the impedance, they should be

rotated by 180° about the centers in the diagrams.
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Fig. 3—The curve shows a locus of I' of the same tapers in Fig. 2
but at a frequency of 6.0 kmc. Lengths of tapers are from 2.5 cm
to 10 cm. See Tables I and III.
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Fig. 4—The curve shows a locus of I" of the same tapers in Fig. 2
but at a frequency of 5.5 kmc. Lengths of tapers are from 3 cm
to 10 cm. See Tables I and IV,
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Fig. 5~~The curves show the VSWR's given in Figs, 2-4 as a function
of taper length for three different frequencies.
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TABLE V

A (cm)
Waveguide | @ (in) | b (in) 46| 42 ] 3.9

kr.nc kmc | kmc

Input terminal | WR-229 | 2.290 | 1.145 | 7.9 9.0 | 10.3
Output terminal| WR-187 | 1.872 | 0.872 | 8.9 | 10.8 | 13.1

TABLE VI
f=4.6 KMC
hiem)| 7 | 9 11 13 15 ‘ 17
% 1.07 | 1.38 | 1.69 | 1.99 2.30 2.61
s 5.85 | 7.52 | 921 |10.88 | 12.54 | 14.20
B 43 | 3.4° | 2.8 | 2.4° 2.0° 1.8°
TABLE VII
f=4.2 KMC
k (cm) ; 7 9 1 13 ‘ 15 17
% 0.98 | 1.26 | 1.54 | 1.82 2.10 2.38
2 535 | 6.86 | 8.40 | 9.04 | 11.45 | 12.99
0 4.3 | 3.4° | 2.8° | 2.4° 2.0° 1.8°
" TABLE VIII
f=3.9 KMC
% (cm) \ 7 9 } 11 13 15 17
W 0.91 | 1.17 | 1.43 | 1.69 | 1.95 2.21
% 496 | 6.38 | 7.82 | 920 | 1062 | 12.01
0, 4.3° | 3.4° | 2.8 | 2.4° 2.0° 1.8°

//“\\%s/ ot 2

ST e
SRR
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Fig. 6—The curve shows a calculated locus of T of typical tapers used
to connect WR-229 and WR-187 waveguides. Lengths of tapers
are from 7 cm to 17 cm, and the frequency is 4.6 kmc. See Tables
V and VI. In Figs. 6-8, loci were shown as the admittance in the
same way as those in Figs. 2-4. Therefore, to use these loci as
values of the impedance, they also should be rotated by 180°
about the centers.
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Fig. 7—The curve shows a locus of T of the same tapers in Fig. 6 but
at a frequency of 4.2 kmc. See Tables V and VII.
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Fig. 8 —The curve shows a locus of T of the same tapers in Fig. 6 but
at a frequency of 3.9 kmec. See Tables V and VIII.

are not exactly pyramidal, <.e., ¢1/b15as/b2.) Tables VI~
VIII list taper parameters %, %', 2y, and 8, for 4.6, 4.2,
and 3.9 kmc, respectively. Figs. 6-8 show the loci of T
calculated by an approximate method of graphical in-
tegration for the tapers listed in Tables VI-VIII. By
using the loci of I' as illustrated in the examples given
in Figs. 2-8, it is possible to design any pyramidally
tapered waveguide with considerable accuracy. If T is
calculated from (10) for two or three discrete taper
lengths, a spiral locus of I" can be traced through the
two or three points as illustrated in the above examples.

Finally the behavior of reflection characteristics of
these tapers are compared with other tapers. For ex-
ponential tapers, Ragan shows a typical figure of
VSWR'’s which reduces to unity at multiples of a half
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wavelength and humps regularly.® However, as seen
from Fig. 5, the VSWR’s of these tapers do not reduce
to unity for particular taper lengths. Next the reflection
characteristics of linear tapers, discussed recently,® are
somewhat similar to those of the subject pyramidal
tapers. However, the reflection of an E-plane linear
taper is more critically dependent on waveguide dimen-
sion (height of waveguide) rather than on frequency.
For these E-plane linear tapers, the frequency behavior
of T' is quite similar to that shown in Fig. 5. From
Stevenson’s theoretical calculations on electromagnetic
horns, (10) is valid for small flare angles.” Since the flare

angles of the tapers are usually small, except for ex-

tremely short tapers, the values of I' can be calculated
from (10) with very little error.

EXPERIMENTAL RESULTS

Inasmuch as the derivation of (10) is based on a num-
ber of assumptions, the calculated results should be
checked experimentally. Measurements were made on
the (WR-229/WR-159) tapers described in Tables I and
II at a frequency of 7.05 kmc. Since the I''s of these
tapers are very small, they were measured as accurately
as possible. The lengths of tapers varied from 3 cm to
7 cm in intervals of 1 cm, and the data were taken at a
frequency of 7.05 kme. The reflection coefficients I were
measured in the smaller WR-159 waveguide and for this
case I" is given by

Pt 4Ar P/ 1 1
)
2 [ )\o 2 Zo—h Zo'—h+2

% dz
(go—h+32)8— P(z0— h+2)

(11)

Measured results are shown in Fig. 9, and these agree
quite well with the data calculated from (11). The mean
error in VSWR was as small as 0.004. The conically
looped locus of T' is quite similar to that of a linear
taper.® Of course, the calculated T' shown in this graph
corresponds to Fig. 2 through a simple transformation.
Other measurements were made at frequencies lower
than 7.05 kmec, and the agreement was worse, as ex-

5 G. L. Ragan, “Microwave Transmission Circuit,” M.I.T. Rad.
Lab. Ser., McGraw-Hill Book Co., Inc.,, New York, N. Y., vol. 9,
p- 307; 1948, See Fig. 6.3.

6 K. Matsumaru, “Reflection coefficient of E-plane tapered wave-
guides,” IRE TrANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-6, pp. 143-149; April, 1958.

7 A. F. Stevenson, “General theory of electromagnetic horns,” J.
Appl. Phys., vol. 22, pp. 1447-1460; December, 1951.

8 K. Matsumaru, “Rebuttal to R. F. H. Yang's comments,” IRE
TrANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-7, pp,
175-176; January, 1959.
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Fig. 9—Measured results of T' of pyramidally tapered waveguides.
The waveguides of the input and output terminals are WR-159
and WR-229. Lengths of tapers are from 3 cm to 7 cm. The solid
and dashed curves show the observed and calculated values, re-
spectively. The frequency is 7.05 kmc.

pected. In the frequency range approximately covered
by Figs. 2-4, the mean error in the VSWR is less than
0.02 for VSWR smaller than 1.08. As seen from Figs.
2-8, the VSWR’s of these particular tapers are smaller
than 1.07 or 1.08, and therefore, in practice, the
VSWR’s computed from (10) or (11) should agree with
observed values to within 0.02. For tapers whose
VSWR’s are smaller than 1.05, the mean error will be
as small as 0.01.

S

CONCLUSION

The reflection coefficients of pyramidally tapered
waveguides can be calculated from (10). As seen from
the examples, the VSWR’s of typical tapers are smaller
than about 1.08, and for most cases, the calculated
VSWR'’s should agree with the experimental values to
within 0.02. As shown in Figs. 2-8, T' decreases almost
concentrically for the tapers shorter than 2\,, and the
phase angle sweeps almost one cycle every half a guide
wavelength of taper length. Consequently, a spiral of
I’ can be traced in the K plane by calculating IT' for two
or three discrete values of taper lengths. For tapers
longer than 2\, the VSWR does not decrease signifi-
cantly with the taper length. :
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